
Using OpenMP 4.5 in the
CLANG/LLVM compiler toolchain

Gheorghe-Teodor Bercea
IBM TJ Watson Research Center
Yorktown Heights, NY

January 2017, Oak Ridge National Laboratory

January, 2017

The CLANG compiler toolchain
❖ CLANG takes as input a source file

and produces a fat binary which
contains the compiled code for the
host and device.

❖ On OpenPower the:

• host is a Power8 or Power8’ CPU

• device is an NVIDIA K40 GPU or a
P100 GPU (Pascal)

❖ CLANG can be used to compile:

• plain C/C++ code (host)

• CUDA code (host + device)

• C/C++ code containing OpenMP
4.5 directives (host + device)

2

PTXAS

LD

LLVMLLVM

CLANG

source.cpp

fat	binary

libomptarget-
nvptx

cubin

LLVM-IR	(*.bc)
PPC64	target

CLANG

LLVM-IR	(*.bc)
NVPTX	target

*.ptx

*.ppc64.asm

NVLINK

*.sass

ppc64

libomptarget-
nvptx.bc

inlining	of	runtime	
functions

runtime	library	on	the	
device

January, 2017

CLANG compiler location

CLANG module:
clang/2.9.cuda8

Availability on ORNL system:
/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8/bin/clang++

3

January, 2017

CLANG options
❖ CLANG typically supports all GCC compiler flags.

❖ Compiling C++ files is similar to GCC:
clang++ a.cpp -o a.out

❖ Compiling C++ with OpenMP for host only:
clang++ a.cpp -fopenmp -o a.out

❖ Compiling C++ with OpenMP for host and device:
clang++ a.cpp -fopenmp –fopenmp-targets=nvptx64-nvidia-cuda -o a.out

❖ On ORNL systems, CLANG with device offloading is enabled by loading modules:
clang/2.9.cuda8 cuda/8.0.44

❖ Additional compiler flag for ORNL system:
–-cuda-path=${OLCF_CUDA_ROOT}

4

January, 2017

Setting up the OpenMP runtime
❖ OpenMP header can be passed as a compiler option:

-I<clang_install_path>/omprtl

OR

export C_INCLUDE_PATH=<clang_install_path>/omprtl

export CPLUS_INCLUDE_PATH=<clang_install_path>/omprtl

❖ OpenMP library:
-L<clang_install_path>/omprtl/lib

OR

export LIBRARY_PATH=<clang_install_path>/omprtl/lib

export LD_LIBRARY_PATH=<clang_install_path>/omprtl/lib

❖ On ORNL systems:
-I${CLANG_OMP_INCLUDE}

-L${CLANG_OMP_LIB}

5

January, 2017

LOMP

❖ The default runtime delivered with IBM’s CLANG compiler is LOMP
(Lightweight OpenMP).

❖ LOMP is a proprietary code which aims to dramatically reduce
overheads.

❖ LOMP is available here:

$CLANG_OMP_LIB

❖ A debug version of LOMP is also available here:

$CLANG_OMP_PATH/lib-debug

• The additional output generated when using the debug version of
LOMP logs every action performed by the runtime library.

6

IBM confidential January, 2017

Runtime variables
❖ OpenMP parallelism uses teams and threads the number of which can be adjusted using:

• clauses - on the teams construct
num_teams (teams construct)

thread_limit (teams construct)

• using runtime environment variables:
OMP_TEAMS_LIMIT [non-standard]

✍ set the maximum number of teams

OMP_NUM_TEAMS [non-standard]

✍ set the default number of teams

OMP_NUM_THREADS

✍ set the number of OpenMP threads

XLSMPOPTS='TARGETTHREADLIMIT=num’

✍ set the number of threads if thread_limit is not specified

XLSMPOPTS=‘TARGETNUMTHREADS=num’

✍ set the default number of threads

XLSMPOPTS='TARGET=MANDATORY | DISABLED | OPTIONAL’

✍ force running on the device, disable running on the device, run if possible

7

January, 2017

Modules on ORNL system

8

January, 2017

ORNL system paths

ORNL environment after executing command module load
clang/2.9.cuda8 cuda/8.0.44:

CLANG_LIB=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8/lib
OLCF_CLANG_ROOT=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8
CLANG_OMP_PATH=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8/omprtl
CLANG_PATH=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8
CLANG_OMP_INCLUDE=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8/omprtl
CLANG_BIN=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8/bin
CLANG_INCLUDE=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8/include
CLANG_VERSION=0.2.9.cuda8
CLANG_OMP_LIB=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8/omprtl/lib

OMPI_FC=xlflang
OMPI_DIR=/sw/summitdev/spectrum_mpi/10.1.0.2.20161130
OMPI_CC=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8/bin/clang
OMPI_CXX=/sw/summitdev/llvm/20161021/clang/0.2.9.cuda8/bin/clang++

9

January, 2017

Setting up the environment

> cat new.env
CLANG_EXEC_FOLDER=$CLANG_BIN
export DEVRTLS=$CLANG_LIB
export LD_LIBRARY_PATH=$CLANG_OMP_PATH/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=$DEVRTLS:$LIBRARY_PATH
export PATH=${CLANG_EXEC_FOLDER}:$PATH
export OMPI_CC=${CLANG_EXEC_FOLDER}/clang
export OMPI_CXX=${CLANG_EXEC_FOLDER}/clang++

10

January, 2017

Compiling a.cpp

> module load clang/2.9.cuda8 cuda/8.0.44

> . new.env

> clang++ -O3 -I${CLANG_OMP_INCLUDE} -fopenmp –fopenmp-
targets=nvptx64-nvidia-cuda -L${CLANG_OMP_LIB} –-cuda-
path=${OLCF_CUDA_ROOT} a.cpp -o a.out

11

January, 2017

Debugging advice
❖ When first porting an application to OpenMP 4.5 ensure that the application first runs on host.

❖ Once correct results are achieved on host, attempt the offloading of the kernels one by one
running the application after every new offloaded region.

❖ To check that a kernel has been offloaded use nvprof:
nvprof ./a.out arg1 arg2

or you can run with -v and check the NVLINK report.

❖ Tools which might help with debugging: gdb (host) or cuda-gdb (on device but limited
features available).
gdb ./a.out

gdb-prompt$> r arg1 arg2

❖ To see all intermediate compilation stages add the flags to the compile line:
-v -save-temps

❖ In case of errors re-run the last command under gdb.
gdb clang++

gdb-prompt$> r <lots of args> a.bc

12

January, 2017

Register counts (for NVIDIA devices)

❖ Each GPU thread requires a number of allocated registers. Compiling with
-v

will print the number of registers per thread used by each kernel:
nvlink info : Function properties for

‘__omp_offloading_802_1bc227f__ZL23InitStressTermsForElemsR6DomainPdS1_
S1_i_l413':

nvlink info : used 18 registers, 0 stack, 896 bytes smem, 376
bytes cmem[0], 0 bytes lmem

❖ The number of registers per thread is capped, by default, to 64. To impose a different
limit the following compiler flag is required:
-Xcuda-ptxas -maxrregcount=128

❖ The number of registers may affect occupancy and can therefore make a difference
in terms of performance.

13

Line number of the kernel, in this case line 413

Name of enclosing function

January, 2017

Compiling Fortran code with xlflang
❖ xlflang is a wrapper for the invocation of:

• XLF’s Fortran Front End (FE)

• a translator that transforms the output of XLF FE to input to LLVM.

• LLVM

❖ Consequently, xlflang forwards user-level compilation flags to LLVM except some specific flags
used by the XLF FE and the translator.

❖ To use the compiler run the following command first:
module load clang/2.9.cuda8 cuda/8.0.44 xlflang/20161206

❖ Additional compiler flag for ORNL system:
–-cuda-path=${OLCF_CUDA_ROOT}

❖ Make sure that previous new.env script also has following path:
export LD_LIBRARY_PATH=<path to xlf>/lib:$LD_LIBRARY_PATH

❖ The runtime setup is similar to CLANG.

❖ Debug by using the debug version of LOMP or by invoking the LLVM AST-print functionality:
ASTPRINT=1 xlflang a.f

14

January, 2017

Device offloading performance checklist

• Data mapping (C/C++ & Fortran): reduce number of data transfers between host and
device. OpenMP mapping constructs such as target enter/exit data, target
update, declare target keep data on device from one target region to another
unless the user advises otherwise.

• Inlining of runtime functions (C/C++): libomptarget-nvptx.bc muct be in
${CLANG_OMP_LIB} folder.

• Use combined constructs wherever possible to produce CUDA-like code (C/C++):
• #pragma omp target teams distribute parallel for

• Make sure enough parallelism is available: use the collapse(k) clause to collapse k
perfectly nested loops and increase the number of parallel iterations (C/C++ & Fortran).

• Mapping loop iterations to threads on host vs. device using the schedule clause (C/C++
& Fortran). Defaults:

•on host: chunked schedules increase locality;

•on device: chunk size of 1 ensures coalesced memory accesses.

15

January, 2017

Device offloading performance checklist

• Thread binding on host (C/C++ & Fortran).

• On device, choose the number of teams and threads (C/C++ &
Fortran). Setting the number of teams and threads using the
num_teams(K1) and thread_limit(K2) clauses can be used
to customize individual loops.

• Use OpenMP support for parallel reductions (C/C++).

• If the device mapped data does not overlap, the compiler flag
-fopenmp-nonaliased-maps will favour usage of faster non-
coherent loads (C/C++).

• CLANG compiler flag: -ffp-contract=fast uses fuse multiplies
and adds wherever profitable, even across statements. Doesn’t
prevent PTXAS from fusing additional multiplies and adds (C/C++).

16

January, 2017

Performance outcomes
❖ LULESH:

• ALE3D hydrodynamics engine proxy application (LLNL).

• Comparison against CUDA version. Kernels are represented by single loops offloaded to an
NVIDIA K40 GPU using:
#pragma omp target teams distribute parallel for

- Schedule has chunk size 1 for memory access coalescing.

- Custom numbers of teams and threads for each loop.

- Avoid redundant data movement between host and device inside the timestepping loop.

• For kernels below the 64 registers per thread threshold we achieve performance comparable
to CUDA code. We also show that for larger kernels, the performance is similar to CUDA code
if register pressure is not a problem.

❖ Cardioid:

• Cardioid is an explicit solver for a reaction-diffusion equation (focus on the reaction part)

• Offloading one of the data parallel kernels of, the Rush-Larsen kernel, achieved:
50% of double-precision floating point peak on a K80 NVIDIA GPU.

46% of double-precision floating point peak on a P100 (Pascal) GPU.

17

Thank you

